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ABSTRACT

The computational efficiency of the One Bit Spectral Correlation Algorithm is compared to other

cyclic spectrum analysis algorithms. A transmission bandwidth advantage is discussed. A parallel

computational structure which implements the OBSCA is described and a system architecture is

proposed.
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I. INTRODUCTION

.. BACKGROUND

a. SPECTRAL CORRELATION ANALYSIS

Spectral correlation analysis is a method of signal

analysis which takes advantage of the cyclostationary

properties found in many communications signals. Most digital

modulation schemes produce signals with underlying

periodically time-variant structures. These structures give

rise to observed functions of time which are successfully

modelled as cyclostationary waveforms. This is especially

true in connection with detection, estimation,

synchronization, and emitter location. The spectral

correlation function(SCF) is the cross spectrum of a signal

with a time or frequency shifted version of itself. The SCF

and cyclostationary waveform theories are discussed fully in

references 1 through 6.

The SCF gives rise to the cyclic cross spectrum, a

three dimensional plot of the signal on the bifrequency plane.

Figure 1 shows the cyclic cross spectrum of a BPSK signal

plotted on the bifrequency plane. The horizontal, or

frequency, axis is denoted by f . The vertical axis is called

the cyclic frequency axis and is denoted by ai. Each feature



on the plane lies along a line of constant a. The large

feature in the background is the normal signal power spectrum

and lies along the a=0 axis. The tallest feature in the

foreground is twice the carrier frequency and the two closest

features on either side are the data.

Because many modulated signals have a unique cyclic

spectrum, cyclic spectrum analysis is particularly well suited

for signal detection, modulation, recognition, signal

parameter estimation, and the design of communication systems.

However, cyclic spectrum analysis has a very high

computational complexity which limits its use as a signal and

systems analysis tool. The basic operations in cyclic spectrum

analysis techniques are Fourier transformations, convolution,

and product modulation which are common to most signal

processing algorithms [Ref. 7]. The sheer number of

calculations required for cyclic spectrum analysis far exceeds

conventional spectral analysis and often proves too great for

general purpose computers.

b. METHODS OF COMPUTATION

In general, there are two broad categories of cyclic

spectrum analysis algorithms: time-smoothing and frequency-

smoothing techniques. Smoothing is the term used to describe

the process by which unwanted irregularities are removed from

the cyclic periodogram. The basic time and frequency
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smoothing techniques are developed in reference 3. Time-

smoothing techniques include the FFT Accumulation Method (FAM)

and the Strip Spectral Correlation Algorithm (SSCA). These

methods were introduced in reference 4 and discussed in

references 8 through 9. In reference 10, it is shown that

these techniques are much more computationally efficient than

the basic Frequency Smoothing Method (FSM). This is because

time smoothing techniques require less computations on the

average than their frequency smoothing counterparts. However,

reference 7 introduced the One Bit Spectral Correlation

Algorithm (OBSCA). OBSCA is a variation of FSM which has some

interesting properties that offer attractive advantages over

the less computationally intense time smoothing algorithms.

Each of these algorithms perform the computations necessary to

calculate the entire cyclic cross spectrum.

c. TDOA APPLICATION

The One Bit Spectral Correlation Algorithm is

particularly well suited for time difference of arrival

applications. The two primary methods for computing the TDOA

of a signal are the Spectral Correlation Ratio Method

(SPECCORR) and the Spectral Coherence Alignment Method

(SPECCOA). In both methods, a signal which is received at

each of two receivers is needed to process the algorithms.

The manner of computation each method employs is slightly

different.

3



The algorithm for SPECCORR [Ref. 11] is

D=argrmax ts(r)} (1)

where the argument is an estimate of

b"(a f SY"( f ) e i2xfT df (2)
Iif-<tVlB12 S1(f)

The algorithm for SPECCOA is

D=argmax{C•(T)) (3)

and the argument is an estimate of

C.=ReI Syx(f) S,• (f) eei2"(f -. /2) df} (4)
U•IB

As can be noted from the above equations, both

SPECCORR and SPECCOA require the computation of SX in order

to determine the location cf any features of interest and then

the computation of Syx along that a to perform the TDOA

calculation. It is the calculation of Syx(f) for a specific

a and all f where the OBSCA algorithm shows the most promise.

4



2. THESIS GOALS

This paper takes a closer look at OBSCA's unique

properties and examines the potential advantages in computing

the cyclic cross spectrum. Comparisons are made against the

FAM and FSM algorithms on the basis of the Hardware Complexity

Product [Ref. 10] for both the entire bifrequency plane and

the special case where there is a specific cyclic frequency of

interest. While SSCA is similar in performance to the FAM

over the entire bifrequency plane, it cannot be simplified in

a manner which is advantageous in calculating the special case

of one a of interest. Therefore, only FAM and FSM will be

used for comparison with OBSCA.

A highly parallel system architecture for OBSCA was

proposed in reference 7. That architecture was proposed for

the calculation of the entire cyclic cross spectrum. This

paper analyzes the computation requirements for the algorithm

and proposes a system architecture which incorporates those

ideas in a manner which allows the OBSCA algorithm to be

implemented so as to compute S,(f) and Sy,(f) along a line of

given a.

5



II. ONE BIT SPECTRAL CORRELATION ALGORITHM

A. INTRODUCTION AND THEORY

The One Bit Spectral Correlation Algorithm is based on the

Digital Frequency Smoothing Method of computing the cyclic

cross spectrum. A frequency smoothed point estimate of the

bifrequency plane at a point (fj,ca) is

b b(fj, i) '

M is restricted to be an even integer. The scaling factor

associated with equation (5) is

b [Y, (j - :+m) (6)2Mm--M/222

The cyclic frequency coordinate is given by ai = i/N and

the spectral frequency coordinate is given by fj = j/N. Where

N = At is the number of samples to be processed assuming a

unity sampling rate. X&t (k) and Y,, (k) are Fourier

transformations of the sampled sequences x(n) and y(n), which

are derived, in turn, by sampling x(t) and y(t) at a rate of

6



fs, assumed to be unity for subsequent developments. Y(t) is

generally a time shifted version of x(t) such that y(t) = x(t-

to).

In order to compute the entire bifrequency plane,

equations (5) and (6) will need to be applied to the whole

plane in some efficient manner. As discussed in references 4

and 9, each point estimate in the plane has a region of

support called a Cyclic Spectrum Analyzer (CSA) cell. The

cells are approximated as a rectangular shape with the length

determined by Af and the width by &a. It is shown in

reference 12 that the frequency resolution Af = M/N and the

cyclic frequency resolution Aa = 1/N [Ref. 12). To determine

the statistical reliability of a point estimate, the time-

frequency resolution product, AtAf = M, must be much greater

than one [Ref. 3].

The CSA cells are used to tile the bifrequency plane in

such a manner that there is no overlap and that the gaps are

minimized. This will ensure that for the entire collection

interval, the point estimates will be calculated so that the

CSA cells cover the whole cyclic cross spectrum. This

requires that the CSA cells be contiguous and non-overlapping

in both f and a. [Ref. 12]

The entire cyclic cross spectrum [Ref. 7] is

(f)£f=(S-1t (f(Jm) : - i e,7(7)

7



where

Q=M-N, (B)

and R= N-M- ] (9)

2M

Figure 2 illustrates such a pattern of CSA cells for Af =

1/8 and AtAf = 4. In most cases, meaningful estimation

requires AtAf Ž 512. This is especially true for weaker

signals down in the noise [Ref. 7]. However, Af = 1/8 is

often encountered in practice, since Af need be no smaller

than one half the bandwidth of the signal of interest, [Ref.

10].

The t[.] function in the OBSCA equation is a complex sign

detector. This function is generally applied to the time or

frequency shifted spectral sequence prior to the correlation

computation. The output of the complex sign detector needs to

be rotated r/4 radians in order to reduce the complex

multiplies of the correlation computation to simple sign

changes and data multiplexing operations. [Ref. 7]

Table 1 summarizes how all this works. Column 1 shows the

four possible sign combinations for a complex number. Column

2 shows the sign bits clipped from the rest of the data.

Column 3 rotates the sign bits by r/4 radians and column 4

8



(111) 0,0) (0,1) (0,-i)(1, z) (Y;, Y')

(1,1) (1,0) (-1,0) (-1,0) (X,,-2 ) (- ,, yi)
(1,1-1) (1,1) (0,-1) (0,1) X(- X r) (- Y,,- Y)
(1,-i) (0,1) (1,0) (1,0) (2r,z ) (r,,- i)

Table 1: OBSCA decoding array operation

takes the complex conjugate of column 3. Column 3 is needed

in equation (6) while column 4 is used in equation (5).

Column 5 demonstrates the multiplexing function of these sign

bits as applied to an arbitrary complex signal X, (Xr,Xi).

Similarly for column 6 with an arbitrary complex signal Y,

(yr'Y0). After the data is multiplexed by the appropriate

decoding array it is passed on to two accumulators (one for

the real and imaginary parts). These accumulators require M

additions to complete an estimate and then the output is

multiplied by the scaling factor associated with that CSA

cell. Figure 3 is a basic block diagram of this process.

[Ref. 7]

B. ALGORITHMIC COMPARISONS

1. ENTIRE BIFREQUENCY PLANE

The Hardware Complexity Product, phu*FT, [Ref. 10] is used

as a measure of the relative complexity of a particular

9



architecture in the analysis of both FAM and FSM in computing

the spectral correlation function. Phu is simply the number

of hardware units needed to accomplish the given computations,

while the Factor of Real Time, FT, is used as an aid in

characterizing the closeness to real time computations of each

of the different methods.

FT= computation time (10)
collect time

Phu*FT = C./,t where Cu is the number of computations needed

and At is the total number of samples processed. The Hardware

Complexity Product is useful because for real time

calculations FT=l, and phu will then represent the total number

of hardware units needed to operate in parallel to achieve

real time. In the case where only one hardware unit is

available, phu =1, the Factor of Real Time gives a objective

view of the length of time needed to perform all the necessary

computations. For convenience, all complex butterflies,

multipliers, and adders will be assumed to be rate-i and

radix-2.

Tables 2 and 3 summarize the complexity analysis for the

major sections of the FSM and FAM realizations, respectively

[Ref. 10]. Because S,(f) is concerned only with real valued

signals, the inherent symmetry of the function makes it

necessary to calculate only the first quadrant of the

bifrequency plane.

10



(1 required) N2/4A required
IFT Correlator Sumincr

CBF (N/2)log 2N - -

Cpx Mpy (N/2)log 2N Al -

Cpx Add N1og 2N -N I
Real Mpy 2Nlog2 N 4M -

Real Add 3Nlog 2N- 2M 2A1I

Table 2: Complexity summary for FSM

a. FSM

From Table 2, the number of real multiplies for the

FSM algorithm over the entire bifrequency plane is

C.IM=2N*LOG2N+I (4N M (11)

4M

Remembering N=At and M=AtAf, equation (11) becomes

Crm=2 A t*LOG2 t + ( 0t) 2  (12)

and therefore
prm* Fr=•2LOGaA t+4• t ( 13 )

N

Also from Table 2, the equation for the number of real

additions for FSM is

CIa=3N*LOG2N+2. (4M) (14)
4M

and the Hardware Complexity Product becomes

11



Pra*FT=3*LOG 2 &t+,&t (5

_________ (P~ rcquirc(1) ( )/4 required)
Windw NV' ITT1 Downl Correl. P FFT

Con1vt. M ultIi. J/ Io 21C3 r. - (N'/2 log2 N' -- P2)o 2
Cp)x Mpy -- (N'/2)log,2N' NV' J)P -(J/ 2 )Iog2 P-
Cp~x Add - N'10g2 A" - Plog2 P-
Real Mp~y N' 2N'log2 N' 4N' 4I) 2P)log 2P*)

Real Add - 3Io 2 " N' 21' 3 Plog2P

Table 3: Complexity summary for FAM

b. FAM

Similarly, from Table 3, the number of real multiplies

for FAM over the entire plane is

C'tm,,8N*LOG2 N+2-E2*LCG 2 4M+4N-+2 ON (16)2M M M

and so the Hardware Complexity Product becomes

Prm*FT=8 *LOG2( ')+2(-i-)*LOG 24AtAf+tI(I+20 (17)

The number of real additions for FAN are also taken from

Table 3.

C.ia=l 2N*LOGJ!E+3.2N *LOG24M2 N 2 +8()
M (18

There fore

12



Pra*F.,l 2 *LOG2 (--)+3(..L)*LOG2 4&t,&f +2()+ (1.9)

c. OBSCA

For OBSCA, the calculations are not as

straightforward. Similarly to the calculations for FSM, the

number of real multiplies for OBSCA is Crm= 4 (CBF+Cs) , where CBF

is the number of complex butterflies and Cs is the number of

scaling factors required over the bifrequency plane. The

factor of 4 is due to the fact that each scaling factor is a

complex quantity which must be multiplied to its respective

CSA cell, and there are 4 real multiplies to each complex one.

For the entire bifrequency plane, the number of scaling

factors is given by

C.= 1 (_V2 N+N 1  (20)C !N2 N M

However, due to the fact that the other two algorithms are

computed only for the first quadrant of the bifrequency plane,

the factor of 4 applied to Cs is canceled. Therefore, the

Hardware Complexity Product for OBSCA becomes

prm*FTr==2*LOG2At+2 2 )+(--) (21)

13



The number of real additions for OBSCA is

Cra=6CBF+2CS+Cs•, where Cs• is the total number of additions

required in all the accumulators over the entire bifrequency

plane. From equation (5), there are M additions for each

change in either i or j. So,from equation (3), Cs5 =M*[range

of i]*[range of j] = M*2Q*2R, or

C.L=M (2 (N-M )(2( N-MiI 1)) =2 (N-M) (N-M-Ii1) (22)

Let i=O in order to calculate the worst case total of

operations. Then

Clui=2 (N-M) 2=2 (N2 -2NM+M2 ) =2N2-4NM+2M 2  (23)

So the total of real additions for OBSCA is

C,,=3N* LOG2N+2N2-4NM+M2 +(•_-2 N +2 (25)

Again, removing a factor of 4 from Cs and Cs• to

indicate the number of calculations in the first quadrant only

Pza*F=3*LOG2 At+lAt-&tAf+l (At&f) 2+1( 1)1 21+-1.(26)
24 4-(

14



Figures 4 and 5 illustrate the relationships between

these equations quite clearly. The Hardware Complexity

Product is plotted against the time-frequency resolution

product in a log vs. log fashion. This shows that although

there is enormous savings in the number of real multiplies,

OBSCA is still not as advantageous as FAM over the whole

plane. The low number of real multiplies is offset by the

exponential increase in the number of real additions as AtAf

increases.

2. SINGLE CYCLIC FREQUENCY OF INTEREST

For applications such as Time difference of arrival,

Frequency Difference of Arrival, signal classification, and

parameter measurement, it is useful to look at a particular

feature on the bifrequency plane. So, instead of computing

the first quadrant of the plane, there are many situations

where it is necessary to perform only those calculations

needed for a single a0 and all f,. Such situations include

looking for a feature occurrence at a known a, as well as

using SPECCORR or SPECCOA to measure the time difference of

arrival.

a. FSM

The number of calculations due to the complex

butterflies will not change. While the following equations

are again discussed in terms of the first quadrant of the

bifrequency plane, if SXY(f) is going to be calculated for

15



SPECCORR or SPECCOA, it will be necessary to include the

negative frequencies also. Equations (23) through (34) can be

easily adjusted by multiplying all but the first term by a

factor of 2.

So, the number of real multiplies for FSM along a

given a. is

Cz-2MN(4N (27)

C,,,=2N*LOG 2 N+- (4M))

and

C
P C*FTm =2*LOG2A t+2 (28)

The number of real additions is given by

/I =3N*LOG2 N+-2 (4M) (29)
2M

and

Pra*FT=3*LOG2At+2 (30)

b. FAM

A similar argument follows for FAM. The number of

calculations performed by the complex butterflies remains

unchanged. The number of calculations required along one

dimension of the bifrequency plane reduces from (N') 2/4 down

16



to just N'12. With NI=N/M, the single a calculations becomes

N/(2M). And the number of real multiplies reduces from

equation (12) to

,,=N*LOG, 2 -+4N*LOG 2 4M+28N (31.)
M

and

Prm*FT=8*LOG 2 ( +4 *L0G2 4& tAf+2 8 (32)

The same reduction is apparent for the real additions,

C 1,,,l12N*LOG2 -+6N*LOG 2 4M+12N (33)
M

and therefore

pra*FT=12*LOG2 (-) +6*LOG24At.&f+12 (34)
'& f

c. QESCA

Along a single line of a, the OBSCA calculation for

positive f is relatively simple. The number of operations due

to the complex butterflies is the same as FSM. While the

relationship for the real multiplies is exactly the same as

for the whole plane Crm=4 (CBF +CS) , CS is now much less. The

largest number of scaling factors is along the f axis where

17



a0=0. In this case, for single a and positive f, Cs=O.5[(N/M)-

1]. So

C.m=2N*LOG2N+2 N-2 (35)
M

and

p rm*FT•= -L = 2 L )-2(-!) (36)

The formula for real additions is also the same,

Cra=6CBF+ 2 Cs+Csu.* But CsU, as well as Cs, is different. In

equation (5), there are M additions for each i and j. Here i

is a constant. From equation (7), then, Cs5 =M*[range of

j]=2MR. With i=O, and substituting equation (9) for R, CsM

=N-M. And for positive f, Cst =0.5 (N-M) . Also, 2Cs=

2(0.5[ (N/M)-1) =(N/M)-1. Therefore, the total number of real

additions is

Cra=3N*LOG2N+ N 2+(--M)- 1 (37)

and

Pre*F7=3LOG2At+'2 2 +.AtAf/ tt/ (38)

It is important to notice that because the double

summation in equation (7) is reduced to a single summation for

18



a given a., the number of real additions has only a factor of

N in the second term of equation (37) instead of the N2 in

equation (25). This factor then drops completely out of

equation (38). This rids OBSCA of that exponential rise in

the number of real additions which is the reason that the

algorithm is not competitive in calculating the whole

bifrequency plane. It is also interesting to note that

equation (38) is not significantly less than equation (26) for

FSM. Especially in light of the fact that the last three

terms in equation (34) are considerably less than one and can

be ignored compared to the first two terms. Thus, it is

surprising to see that FSM is extremely competitive with OBSCA

in computing the a single line of a.

Figures 6 and 7 show the Hardware Complexity Product of

the real multiplications and real additions for a single a,

respectively. As in Figures 4 and 5, these are plotted

against the time-frequency resolution product in order to

better display the tendencies for useful AtAf's. As shown,

OBSCA is much more efficient than FAM for a single a, but it

is also shown how close FSM is to OBSCA.

C. BANDWIDTH ADVANTAGE

Because of the manner in which OBSCA is calculated, there

is an advantage in using OBSCA in TDOA calculations. The two

methods, SPECCORR and SPECCOA, require that both the auto-

correlation, S,(f), and the cross correlation, SYX(f), be

19



computed. OBSCA can reduce the amount of data which needs to

be transferred. Under normal circumstances, two separate

receivers are used to receive the signals. For the sake of

argument, let receiver one (R1) receive the signal x(t) and

perform the computations, and receiver two (R2) receive the

time shifted signal x(t-t 0 )=Y(t). In order for R1 to

implement the SPECCOA algorithm, R2 must send all N sample of

complex data to RI. Let n be the number of bits required for

each real and imaginary parts. Then, R2 must send 2Nn bits of

data. R1 can then compute SXY and Sx for the SPECCOA

algorithm.

Examination of equation (5) reveals that the complex sign

detector function,1[.], only relies on the spectral data from

y(t), while equation (6) shows that the scaling factors can

also be computed solely from this same data. Therefore, in a

similar situation where Ri receives x(t) and R2 receives

y(t),the transmission bandwidth required is less by at least

a factor of 10. Once both signals are received. R1 can

determine the cyclic frequency of interest. This is sent to

R2 using n bits. R2 can now calculate the required scaling

factors and clip the sign bits from the spectral data of y(t).

At most there are (N/M)-l scaling factors along the f axis

[Ref. 7). Since these are complex numbers, this is sent to Ri

with ((N/M)-I)2n bits. The resulting sign bits for N samples

only need 2N bits to be sent to RI. The total number of bits

required to transmit all this data back and forth is
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nt=(2Nn)/M+2N+n bits for OBSCA as opposed to 2Nn bits

normally. Typical values are N=4,194,304, M=4096, and n=24

bits. These numbers lead to an approximate reduction of 25

times less data needing to be transmitted. This is

illustrated clearly in Figure 8.

While the *[.] data only has to be transmitted once, each

a must be sent separately. Furthermore, if these a's are not

sufficiently close so as to fall within the same set of

partitions, then a new set of scaling factors must be sent as

well. This, of course, would increase the required bandwidth

necessary to transmit the data.
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III. STRUCTURES FOR SINGLE CYCLIC FREQUENCIES

A. INTRODUCTION

Reference 7 introduces a structural architecture which

allows highly parallel computational implementations of the

OBSCA in calculating the entire bifrequency plane. In order

to accomplish this, reference 7 describes a Basic Partitioning

Scheme(BPS) which mimics the contiguous and nonoverlapping

pattern of CSA cells in Figure 2. The idea is that once the

bifrequency plane has been appropriately tiled with partitions

based on the BPS, all the calculations within each partition

can be conducted independently of any other partition. Each

partition on the plane is mapped into a square array called

the Q array. This array is then subdivided into related

partitions called the R and S arrays. These arrays in turn

led to a suggestion of an architecture for parallel

computation. The example in reference 7 uses Af=1/8 which is

achieved with N=16 and M=2. The number of partitions from

equation (20) is C,=25. These partitions map into the Q array

as shown in Figure 9, and Figure 10 shows how the R and S

arrays are formed from the Q array. Taking the R array as a

further example, reference 7 goes on to show that if processor

elements were arranged as in Figure 11, each partition would
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be computed in parallel. Further parallelism within each

processor element was also discussed.

B. EQUIVALENT STRUCTURE FOR SINGLE CYCLIC FREQUENCY OF

INTEREST

Continuing with the concept that it would be advantageous

at times to caJculate a line of frequency for a given cyclic

frequency of interest, the following structure is presented.

Based on the ideas found in reference 7, only minor

modifications need to be made to allow highly parallel

computation of a single a0.

The architecture in reference 7 is shown in Figure 12.

Since each partition requires a contiguous band of spectral

data, the process begins by transferring the spectral data

from the output of the FFT's to the X and Y memory buffers of

the processor element. The data is broadcasted sequentially

from one end of the spectral band to the other and the memory

buffers intercept and store its appropriate band of data.

Once all this is accomplished, all the partitions are computed

simultaneously.

Upon examining Figures 11 and 12 closely, it is of

interest to note that for a given a, the X and Y memory buffer

are only used, at most, once each. This readily suggests that

a decoding array can be implemented which uses a as an input

and multiplexes the X and Y memory buffers appropriately to

compute the correct partitions associated with the given a.
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Figure 13 shows the R and S arrays with the X and Y memory

buffers. Figure 14 shows how a given a fixes the use of each

X and Y memory buffer to calculate the partitions for Af=1/8.

Once each partition is computed, it is passed on to be scaled

as needed. Within each processor element, the same

architecture suggested in reference 7 can be used without

modification.

The advantage in this structure, of course, is that there

are not so many processor elements needed to perform the

desired calculations. At most, (N/M)-l processor elements

would be required as mentioned earlier. Although it would be

infrequently required to calculate along the f axis as that is

the normal signal power spectrum, if less processor elements

were used it would be possible not to have enough elements to

calculate all the required partitions in a single pass. This

would require that some processor elements compute more than

one partition which obviously slows performance and defeats

the advantages inherent in the parallel design.
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IV. SUMMARY

A. CONCLUSIONS

The multiplexing properties of the OBSCA allow for greatly

reduced numbers of real multiplications. However, it is not

sufficient to give OBSCA an advantage over the better time

smoothing algorithms. FAM and SSCA are still far more

computationally efficient in computing the entire bifrequency

plane than their frequency smoothing counterparts, even with

OBSCA.

It has been shown that OBSCA is much better suited for

calculating a single a than either FAM or SSCA. However, it

is interesting to note that while OBSCA is intended to

increase the computational efficiency of the frequency

smoothing methods, the direct application of the FSM proved to

be nearly as efficient as OBSCA.

There does exist a transmission bandwidth advantage to

using OBSCA in TDOA operations. This is especially true when

there are multiple cyclic frequencies of interest within the

same set of partitions. The advantage is diminished slightly

for each new a which lies in a new partition set.

Application specific integrated circuits appears to be a

natural implementation procedure for the proposed system

architecture illustrated in Figures 11, 12, and 14.
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B. RECOMMENDATIONS

In the case where there is only one cyclic frequency of

interest, it is readily apparent from this research that a

closer study of FSM and OBSCA is required to understand the

trade offs between the two methods. It is, therefore,

recommended that further analysis be conducted concentrating

on the computational and implementational similarities and

differences that exist between FSM and OBSCA.

Further architectural study is needed to determine a

suitable Application Specific Integrated Circuit (ASIC) which

would be appropriate to OBSCA. The OBSCA's obvious potential

of implementation using massively parallel architectures far

exceeds that of the other algorithms and also requires a more

in depth approach than given here.
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